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Abstract

Generation of well-dispersed, well-characterized fibers is important in toxicology studies. A 

vortex-tube shaking method is investigated using glass fibers to characterize the generated aerosol. 

Controlling parameters that were studied included initial batch amounts of glass fibers, preparation 

of the powder (e.g., preshaking), humidity, and airflow rate. Total fiber number concentrations and 

aerodynamic size distributions were typically measured. The aerosol concentration is only stable 

for short times (t < 10 min) and then falls precipitously, with concomitant changes in the aerosol 

aerodynamic size distribution; the plateau concentration and its duration both increase with batch 

size. Preshaking enhances the initial aerosol concentration and enables the aerosolization of longer 

fibers. Higher humidity strongly affects the particle size distribution and the number 

concentration, resulting in a smaller modal diameter and a higher number concentration. Running 

the vortex shaker at higher flow rates (Q > 0.3 lpm), yields an aerosol with a particle size 

distribution representative of the batch powder; running the vortex shaker at a lower aerosol flow 

rate (Q ~ 0.1 lpm) only aerosolizes the shorter fibers. These results have implications for the use 

of the vortex shaker as a standard aerosol generator.

1. INTRODUCTION

Generation of well-dispersed, well-characterized fibers is important in toxicology studies. 

Historically, aerosols of asbestos and man-made vitreous fibers were extensively 

investigated. During the past decade, airborne fibrous carbonaceous nanoparticles, such as 

carbon nanotubes (CNTs) and carbon nanofibers (CNFs), have received scrutiny owing to 

their morphological similarity with asbestos. Concerns as to their potential toxicity derive 

from their thin fiber-like structure and their insolubility in the lungs, attributes common with 

harmful asbestos fibers (Poland et al. 2008; Donaldson and Poland 2009; Kisin et al. 2011). 

Various approaches to generating fibrous aerosol particles from bulk powder materials have 

been used for toxicology tests (Ku et al. 2006; Baron et al. 2008; McKinney et al. 2009; Kim 

et al. 2010).
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Spurny (1980) reviewed the earlier aerosolization methods such as pulverizing fibrous 

materials and fluidized-bed aerosol generation, focusing on mineral fibers. Maynard et al. 

(2004), in order to simulate exposures encountered in the field, used a vortex generator to 

aerosolize CNT particles so as to monitor these aerosols in the lab. Ku et al. (2006) agitated 

CNF powder using a vortex shaker in order to study the CNF aerosol. Baron et al. (2008) 

developed an aerosol generator for extremely low-density single-walled carbon nanotubes 

(SWCNTs) for inhalation studies, using an acoustic feeder and a knife mill. McKinney et al. 

(2009) generated a respirable fraction of multi-walled carbon nanotubes (MWCNTs) from 

bulk material using a similar acoustic feeder. Ku and Kulkarni (2009) dispersed SWCNTs 

using an electrospray of a SWCNT suspension to get less agglomerated SWCNT aerosol 

particles. Kim et al. (2010) used a similar electrospray method to deliver airborne 

nanoparticles such as TiO2 and CNT for in vitro and in vivo studies. Recently, Ku et al. 

(2013) used the vortex shaker to aerosolize glass fibers to study the efficacy of screens to 

alter the fiber length distribution within the aerosol. In all of these studies, the common aim 

was to better disperse the material so as to obtain deagglomerated particles in the aerosol.

Current fiber measurement techniques arose primarily due to health concerns over asbestos 

exposure. Whether to provide samples for in vitro testing (Zeidler-Erdely et al. 2006) or to 

generate aerosols for inhalation studies, the aerosolization method needs to successfully 

aerosolize fibers without undue agglomeration. Vortex shaking has been used to aerosolize 

fibrous particles such as CNFs and CNTs because of its simplicity and ease of use (Ku et al. 

2006; Maynard et al. 2007). It is believed that vortex shaking imparts additional mechanical 

energy to break up agglomerates entangled in the powder, compared to other less aggressive 

methods such as acoustic generators. The vortex shaking method is currently under 

discussion by the International Standards Organization as a candidate ISO technical 

specification to evaluate nanoparticle release from powders (Ogura et al. 2009; ISO 2012).

In this study, we conducted a series of experiments to characterize a vortex-tube shaking 

method of generating aerosols of fibrous particles. We investigated a variety of controlling 

parameters (initial batch amounts of glass fibers, preshaking of the powder, humidity, and 

aerosol flow rates) on the characteristics of the aerosolized fibers. Total fiber number 

concentration and aerodynamic size distributions were measured. Particular attention was 

paid to temporal changes (i.e., decay) of the aerosols as these controlling parameters were 

varied.

2. MATERIALS

Glass fiber powder (GW1), supplied by the Japan Fibrous Material Research Association 

(JFMRA) (Kohyama et al. 1997), was aerosolized by the vortex shaker for this study. The 

glass fibers in this sample have a nominal geometric mean length, Lgeom ~ 20.0 µm (50% 

cut-off length L50 ~ 20.0 µm), with geometric standard deviation, GSD ~ 2.58, and a 

nominal geometric mean diameter, dgeom ~ 0.88 µm, with GSD ~ 3.10 (Kohyama et al. 

1997). In the current study, we found slightly lower Lgeom ~ 18 µm and L50 ~ 15 µm, than 

those reported by Kohyama and colleagues (see the result and discussion section). This same 

material was used in our previous studies (Ku et al. 2012, 2013), where aerosols of glass 

fibers were generated by the vortex shaking method.
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For the initial phase of this study, a weighed amount of the glass fibers was loaded into the 

vortex shaker tube “as received.” We also investigated aerosolization of powder which had 

been “pre-shaken”—namely, the vortex shaker was run so that the vortex tube underwent its 

usual rotational motion but where no air flow was introduced so as to carry away the dust 

cloud. For our long-duration study, we periodically interrupted the vortex shaking in order to 

sieve the powder remaining at the bottom of the vortex shaker tube. Sieving of remnant 

fibers was performed using a 35-mesh stainless steel sieve (i.e., aperture size = 425 µm).

3. EXPERIMENTAL METHODS

The experimental setup is shown in Figure 1. A vortex shaker (Vortex-Genie 2, Scientific 

Industries, Inc.) is operated at variable speeds of 600–3200 rpm, executing a large (r = 6 

mm) orbit for aggressive vortex shaking; we typically operated the vortex shaker at 70% 

maximum rotation speed. A batch of glass fiber powder is placed at the bottom of a Pyrex 

tube (depth h = 20 cm, diameter OD = 2.5 cm), which is anchored by means of a pop-off cup 

on top of the vortex shaker (Figure 1).

HEPA filtered air is provided into the top of the vortex tube, and the aerosol is similarly 

drawn from a second port at the top of the vortex tube which is sealed with a rubber cap; the 

air flow is presumably directed downward along one side of the tube and upward along the 

opposite side. The Reynolds number of the flow within the vortex tube is estimated to be Re 

~ 101–102, so the airflow should be laminar. In order to test the effect of humidity, a bubbler 

was used to saturate the incoming air stream to 90% relative humidity (RH) which was 

measured by a thermohygrometer (Digi-Sense®, Cole-Parmer). When in operation, the base 

of the vortex tube executes rotary motion by the vortex shaker; the powder at the base of the 

tube is sufficiently mechanically agitated to loft a cloud of fibers in the tube. The overall 

airflow sweeps the lofted particles out as an aerosol. The unit may also be operated in the 

absence of an airflow (preshaking mode). In this closed mode, the cloud is in dynamic 

equilibrium with the powder: the powder is mechanically agitated, transferring material to 

the dust cloud, but material also falls from the dust cloud back onto the powder pile.

Aerodynamic size distributions of the airborne glass fibers from the vortex shaker were 

measured by sampling the aerosol through an Aerodynamic Particle Sizer (3321, TSI Inc., 

Shore-view, MN, USA). Aerodynamic size distributions of generated glass fibers were 

measured as a function of time, and decay of total number concentration with time for 

different initial batch amounts was measured continuously by APS for two to three hours. 

APS measurement was made at an aerosol flow rate of 1.5 lpm. Total fiber number 

concentrations were obtained using the APS and integrating over all channels.

Physical length distributions were measured by sampling the airborne fibers through a 

mixed cellulose ester (MCE) filter (SKC Inc., Eighty Four, PA, USA), mounted in a 25 mm 

conductive cassette (#225-321A, SKC Inc.). The MCE filters were acetone clarified, and 

representative fibers were imaged by a phase contrast microscope (PCM) with 40X 

objective magnification; lengths were measured using Motic software (Motic Incorporation 

Ltd., Hong Kong), and length distributions were constructed, as discussed previously (Ku et 

al. 2013).
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3.1. Control Parameters

In order to investigate aerosol generation characteristics of the vortex shaker, we considered 

four control parameters: initial batch amounts of glass fibers, powder preparation (i.e., 

preshaking), humidity, and rate of the airflow.

• Initial batch amount: 0.1, 0.2, 0.5, 0.8, and 1.0 g;

• Powder preparation:

(a) No preshaking (powder ‘as received’),

(b) 30 min preshaking (running the rotating vortex generator but without 

airflow);

• Humidity:

(a) Dry air (about 5–10%),

(b) RH = 90%;

• Rate of airflow: 0.1, 0.3, 0.9, 1.5, 2.5 lpm.

To ensure the effect of each control parameter on the aerosol characteristics such as size 

distributions, at least two to three tests were conducted under the same experimental 

condition.

4. RESULTS AND DISCUSSION

In the results discussed below, we find that the aerosol of glass fibers generated by the 

vortex shaker depends on a variety of control parameters (batch size, powder preparation, 

humidity, airflow rate) and is not stable over long run times. Thus, while the vortex 

generator is low cost, easy to set up and use, great care should be exercised in comparing 

aerosols generated in this manner from different labs, or even at different times within the 

same lab using the same equipment.

4.1. Time Dependence of the Aerosol Concentration as a Function of Batch Size

Figure 2 shows the time evolution of the total number concentration of glass fibers 

generated by the vortex shaker for various batch amounts of fiber powder at an airflow rate 

Q = 1.5 lpm. The number concentration is stable for the first 5–10 min and then drops 

precipitously. The initial total number concentration plateau increases with initial batch size; 

the time duration of the initial plateau concentration also seems to increase with batch size.

Following an initial phase of stable operation, the aerosol concentration is always found to 

decay. This decay is qualitatively similar for all batches, although the details of the time-

dependence seem to be batch dependent, with the smaller batches decaying more gradually 

than the larger batches. For the Mi = 0.1 g batch, the initial time decay is ~t−3/4, which 

crosses over to ~t−2 at the later times; for the Mi = 0.2 g batch, the time decay is ~ t−3/2; for 

the larger batches (Mi > 0.5 g), the time decay is ~t−2. For the Mi = 0.3 g batch material 

(shown in the inset), the strength of the vortex shaking was repeatedly adjusted, with the aim 
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of stabilizing the aerosol concentration; with this manual feedback, the number 

concentration could be stabilized for about 40 min.

4.2. Time Dependence of Size Distributions as a Function of Batch Size

Figure 3a shows the time evolution of the aerodynamic size distribution of glass fibers 

generated by vortex shaker (without preshaking) for the smaller batch amount, Mi = 0.2 g, 

again at airflow rate Q = 1.5 lpm. The distribution is essentially unimodal, with a tail to 

larger aerodynamic diameters. Aerodynamically larger fibers (dae > 2 µm) are quickly 

depleted from the aerosol stream, relative to the aerodynamically smaller fibers. Fibers from 

a larger initial batch, Mi = 1.0 g, under the same airflow conditions (Q = 1.5 lpm) show one 

mode initially and later two modes (Figure 3b). The decay of the primary mode (dae ~ 1 µm) 

seems to be similar to that for the smaller batch amount (0.2 g).

Figure 4 is a more detailed plot of the aerodynamic size distribution for this base case—

initial batch size Mi = 0.2 g, dry air, airflow rate Q = 1.5 lpm, and no preshaking—over the 

shorter time period 0 < t < 10 min; note, that this is within the “plateau” region, as indicated 

by the total number concentration. Even within the plateau region, the peaks in the 

aerodynamic diameter distribution decay by a factor of 2 over 10 min, although the overall 

shape of the entire aerodynamic diameter distribution is relatively unchanged.

We examined the effects on aerosol quality by changing two parameters within this short 

initial time period: preshaking the fiber powder, and changing the humidity of the air 

passing through the vortex generator.

4.3. Effect of Preshaking on Aerosol Generation

Figure 5a shows the time evolution of the aerodynamic size distribution of glass fibers 

generated by the vortex shaker in dry air for batch amount Mi = 0.2 g, again at airflow rate Q 

= 1.5 lpm, but where the initial powder was shaken for 30 min prior to aerosolization in the 

vortex-shaker (preshaking).

With preshaking, the initial concentration in the aerosol is essentially twice that of the 

control (no preshaking, shown in Figure 4). Also, preshaking aerosolizes more of the larger 

fibers (there is significantly more weight in the distribution at the larger aerodynamic 

diameters)—this is probably due to enhanced dispersion of the fibers by preshaking of the 

powder in the tube. Both distributions—unshaken (Figure 4) and preshaken (Figure 5a)—

decay with time, and after ~3 min, they effectively coincide, removing all effect of whether 

or not the initial powder had been preshaken; at Q ~ 1.5 lpm, t ~ 3 min corresponds to ~100 

exchange volumes through the vortex shaker tube. Since the initial aerosol of the preshaken 

powder contains more of the larger fibers than does the control, and since the two aerosol 

distributions coincide after 3 min of running the vortex shaker, the larger fibers are swept 

out more efficiently than the shorter fibers, once the airflow is established.

4.4. Effect of Humidity on Aerosol Generation

Raising the humidity from dry air to RH = 90% also changed the size distributions of fibers 

in the aerosol (Figure 5b); the modal diameter is shifted to a smaller size (from 1.0 µm to 
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about 0.8 µm), and the maximum number concentration increased by a factor of 5. This 

concentration effect is not transient; even after 10 min, the maximum number concentration, 

which has decayed in both samples, is still higher in the humid sample, relative to the dry 

sample, by a factor of 7. The humidity dependence clearly must derive from the surface 

chemistry of the material being aerosolized (e.g., at high humidity, water may condense on 

the surface of glass fibers, whereas this would not be expected to happen with hydrophobic 

materials such as CNTs). The fiber size distribution is also altered by the humidity: after 1 

min, under dry conditions, N(dae~1 µm)/N(dae~2 µm) ~ 1.1, whereas under RH = 90%, 

N(dae~1 µm)/N(dae~2 µm) ~ 1.3; after 10 min, under dry conditions, N(dae~1 µm)/N(dae~2 

µm) ~ 2, whereas, under RH ~ 90%, N(dae~1 µm)/N(dae~2 µm) ~ 5. Again we see efficient 

temporal depletion of the larger fibers from the aerosol, which depletion is further enhanced 

by humidity.

4.5. Effect of Airflow Rate on Aerosol Generation

We investigated the vortex shaking method at different aerosol flows. The aerodynamic size 

distribution at different aerosol flow rates (dry air) is shown in Figure 6a—the same data is 

plotted (Figure 6b) as a cumulative fiber number fraction. For fibers aerosolized at high 

aerosol flow rates, Q > 0.9 lpm, the aerodynamic size distributions are relatively unaffected 

by flow rate; however, at the lower flow rates, Q < 0.9 lpm, the aerodynamic size 

distribution becomes narrower as the aerosolizing flow rate is reduced. In particular, at the 

lowest flow rate, Q = 0.1 lpm, the aerodynamic size distribution spanned only 4 µm; by 

contrast, at Q ~ 1.5 lpm, the aerodynamic size distribution spans 20 µm. It would appear 

that, at the lower flow rates, the larger fibers are not being aerosolized.

The flow rate dependence of the aerosol aerodynamic diameter distribution is confirmed by 

direct physical measurement of the lengths of fibers collected from the different aerosol 

streams. Figure 7 shows the cumulative fiber number fraction as a function of fiber length 

(measured by PCM) for the different aerosol flow rates.

At the lowest flow rate, Q ~ 0.1 lpm, only the shortest fibers are aerosolized by the vortex 

shaker; however, for Q > 0.3 lpm, the physical length distribution does not depend on flow 

rate and is representative of the physical length distribution of the batch powder. 

Quantitatively, the 50% cut-off length depends on aerosol flow rates: L50 ~ 10 µm, for Q > 

0.3 lpm, is drastically reduced to L50 ~ 2.7 µm, for Q ~ 0.1 lpm, indicating that running the 

vortex shaker at the lowest airflow rate preferentially aerosolizes shorter fibers.

4.6. Effects of Running the Vortex Shaker for Long Times

We have seen time-dependent effects on the aerosol number concentration (Figure 2), on a 

time scale of 2 h, and changes in the aerosol size distribution (Figures 4 and 5), on an even 

shorter time scale of 10 min. We also looked at very long time effects, on a time scale up to 

18 h. Since the aerosol size distribution is changing, potential mechanisms need to be 

considered which might affect the preferential aerosolization of different length fractions as 

a function of time. Over time, size segregation may occur within the powder at the bottom of 

the vortex shaker tube via percolation and granular convection, with the smaller fibers 

settling through the interstices formed by the packing of the larger fibers (i.e., percolation) 
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and by carrying particles down at the walls and up in the center of the tube (i.e., granular 

convection), the so-called “Brazil nut effect” (Rosato et al. 1987; Knight et al. 1993, 1996; 

Moebius et al. 2001; Jenkins and Yoon 2002); this would tend to reduce the aerosolization 

of the shorter fibers with time. Alternatively, when running at the lower flow rates, Q ~ 0.1 l 

pm, only the smaller fibers are aerosolized, so that, over time, the powder should be depleted 

of short fibers (i.e., “enriched” with long fibers). Again, we would expect to see a reduction 

in the aerosolization of the short fibers with time.

We thus examined the preferential separation of smaller fibers by running the vortex shaker 

at Q ~ 0.1 l pm (dry air) for long times (up to 18 h). Figure 8 shows the cumulative number 

fraction as a function of fiber length for different operating conditions of the vortex shaker: 

7.5 h run, 10 h run with sieving, 18 h run, 18 h run with sieving, and 16 h run with sieving. 

The length distribution of the raw material is included in Figure 8 for comparison.

In this set of experiments, sieving of fibers remaining in the vortex tube was performed 

frequently (e.g., three to five times) after running the vortex shaker for several hours. 

Aggressive sieving of the residual fibers is motivated by the hypothesis that, during the 

operation of the vortex shaker, longer fibers might form entangled agglomerates (see 

Appendix), possibly immobilizing some of the residual smaller fibers. Aggressive sieving 

(where the material is pushed through the mesh) would tend to break up these agglomerates 

and liberate the smaller fibers for subsequent aerosolization in the vortex shaker.

We first discuss the long time behavior without sieving. The fiber length distribution of 

fibers collected from the aerosol stream after running the vortex shaker without sieving, for 

7.5 and 18 h, is shown in Figure 8. There is minimal change in the aerosol after 7.5 h (i.e., 

the aerosol at 18 h looks very similar to the aerosol at 7.5 h); however, the long-time aerosol 

is depleted of short fibers, relative to the starting material. While the (t = 0) starting material 

has about 30% fibers smaller than 10 µm, running the vortex shaker for t ~ 7.5 (18) h yields 

about 18% (15%) fibers smaller than 10 µm; similarly, the 50% cut-off length is increased 

from L50 ~18 µm (t = 0) to L50 ~25 µm (t ~ 7.5 h) and L50 ~ 28 µm (t ~ 18 h). This very long 

time (t > h) depletion of the short fibers from the aerosol is opposite to the shorter time (t ~ 

10 min) depletion of the long fibers from the aerosol.

We now discuss the long time behavior with periodic sieving. Figure 8 also shows data for 

two runs of the vortex shaker with aggressive sieving: 16 h (8 sievings) and 18 h (3 

sievings). For both cases, the 50% cut-off lengths L50 ~ 35 µm. The length distributions 

coincide for shorter fiber lengths; the fractions of fibers smaller than 10 µm are about 9%, 

suppressed from 30% of the starting material. However, the length distributions are quite 

different for the longer fiber lengths; the case of 16 h (8 sievings) contains more of the long 

fibers than the case of 18 h (3 sievings). Since the run times are comparable, this suggests 

that increasing the number of sievings enriches the final aerosol in long fibers.

Figure 9 shows the total number concentrations as a function of time for 18 h (a) without 

and (b) with sieving. For the case with no sieving (Figure 9a), the aerosol concentration is 

well-behaved, decreasing with a decay time τ ~ 3 h. The case with sieving (Figure 9b) is 

more complicated and not at all understood. There is an initial increase (over 200 min) in 
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concentration (prior to any sieving event), and then a gradual decrease in concentration, 

much slower than in the no sieving case; also the sieving process seems to generate 

concentration spikes in the aerosol, which decay very quickly.

Figure 10 show the corresponding aerodynamic diameter distributions (a) without and (b) 

with sieving. In the case without sieving, there is a short time (t < 60 min) shift in the 

aerodynamic diameter distribution to the mode at about 0.8–1.0 µm, which is subsequently 

stable. When the vortex shaking is periodically interrupted with sieving, the aerodynamic 

diameter distribution retains weight at a higher mode (dae ~1.6 µm) for the duration of the 

run. Also the initial (unexplained) increase in concentration is accompanied by changes in 

the initial aerodynamic diameter distribution.

5. CONCLUSIONS

A vortex-tube shaking method was characterized with glass fibers to understand its aerosol 

generation characteristics. Total aerosol concentrations and aerodynamic size distributions 

were measured for the following different operating conditions: initial batch amounts of 

glass fibers in the vortex tube, powder preparation (i.e., preshaking), humidity, and rate of 

airflow. The quality of the aerosol, and its time dependence, were found to depend on all of 

the above operating parameters.

In summary, we found the following key conclusions:

1. The total fiber number concentration of the aerosol exhibited a characteristic time 

dependence: the concentration was stable for about t ~ 10 min but then 

precipitously decreased.

2. The magnitude of the concentration plateau increased with powder batch size; the 

duration of the concentration plateau also increased with powder batch size.

3. The concentration decay, following the concentration plateau, is qualitatively 

similar for the different batch sizes.

4. The aerodynamic size distribution also evolved with time, with a depletion from the 

aerosol of the longer fibers over a τ ~ min timescale.

5. Preshaking the powder enhances the initial aerosol concentration; it also enhances 

the initial weight in the aerodynamic size distribution at the larger aerodynamic 

diameters; however, after about t ~ 3 min (~100 exchange volumes) the effects of 

preshaking disappear.

6. Raising the humidity, from dry air to RH ~ 90%, increased the initial number 

concentration by a factor of 5; it also slightly reduced the modal diameter in the 

aerodynamic size distribution.

7. Reducing the aerosol flow reduces the ability to aerosolize the larger fibers. This 

effect is seen both in the aerodynamic size distribution and in the physical length of 

the aerosolized fibers.

8. Over long times, t > 1 h, the vortex shaker preferentially aerosolizes the longer 

fibers. This long time depletion of the short fibers from the aerosol is opposite to 
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the intermediate time (t ~ 10 min) depletion of the long fibers from the aerosol. 

This long time effect can be minimized by periodically interrupting the vortex 

shaking and sieving the residual powder (presumably, breaking up entangled 

aggregates).

Some recommendations for the use of the vortex shaking method are summarized in the 

following Table 1.

As a final remark, the complicated time dependences, and the dependence of the aerosol 

quality (e.g., concentration and aerodynamic size distribution) on a variety of control 

parameters, indicate that great care should be exercised to monitor the consistency and 

stability of aerosols generated with the vortex shaker. Also, more work needs to be done for 

different types of fiber materials in the future to add more data on characterization of the 

vortex-shaking method to the limited body of knowledge on the capability of the vortex-

shaking method.
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APPENDIX: LONG FIBER ENTANGLEMENT

We attempted to verify whether long fiber entanglement is actually occurring in the residual 

powder as the vortex shaker is run. Gentle sieving, where we let pass through the sieve only 

that loose material which would penetrate on its own, and where the larger aggregated 

material is caught on the screen, might allow us to determine if there is a difference in size 

distribution between entangled and loose fibers. For this experiment, we ran the vortex 

shaker, as before, at Q = 0.1 lpm, for 10 h, stopping to aggressively sieve the residual 

material in the tube every 2 h. After the final 10 h, we gently sieved the material left in the 

tube and separated what was retained on the sieve from what penetrated through the sieve. 

The fiber length distributions of these two fractions are shown in Figure A1. The fiber 

material that penetrated through the sieve was found to have a length distribution similar to 

that of the original powder; however, the material captured on the sieve consisted of very 

long fibers, with a 50% cut-off length L50 ~ 55 µm (recall L50 ~ 15 µm for the original 

powder). It may be possible to exploit this effect so as to obtain an enriched sample of 

longer fibers. This scheme is under current investigation.
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FIG. A1. Fraction of cumulative fiber number vs. fiber length for what was left on the sieve 

and what penetrated through the sieve for 10 h run with sieving. (Color figure available 

online.)
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FIG. 1. 
Experimental setup.
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FIG. 2. 
Total fiber number concentration of glass fibers generated by vortex shaker as a function of 

time for various initial batch amounts. Inset: total fiber number concentration (Mi = 0.3 g) 

where vortex shaker conditions are altered to prolong initial fiber concentration.
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FIG. 3. 
Number size distribution of glass fibers generated without preshaking and measured by an 

aerodynamic particle sizer for different batch amounts. (a) Batch amount 0.2 g and (b) 1.0 g. 

Dry air and airflow rate Q = 1.5 lpm. (Color figure available online.)
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FIG. 4. 
Number size distribution of glass fibers generated without preshaking and measured by an 

aerodynamic particle sizer. Batch amount 0.2 g, dry air, and airflow rate Q = 1.5 lpm. (Color 

figure available online.)
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FIG. 5. 
Number size distribution of glass fibers generated by vortex shaker as a function of time for 

batch amount of 0.2 g after 30 min preshaking. (a) In dry air and (b) in humid air (RH = 

90%). (Color figure available online.)
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FIG. 6. 
Size distributions of glass fibers as a function of aerodynamic diameter for different aerosol 

flow rates (batch amount Mi = 0.2 g). (a) Size distribution normalized by peak value. (b) 

Fraction of cumulative fiber number. (Color figure available online.)
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FIG. 7. 
Fraction of cumulative fiber number vs. fiber length for different aerosol flow rates. (Color 

figure available online.)
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FIG. 8. 
Fraction of cumulative fiber number vs. fiber length for different operation conditions (16 

and 18 h runs) of the vortex shaker at 0.1 lpm of aerosol flow rate.
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FIG. 9. 
Total number concentration measured at different times during the 18 h run at 0.1 lpm of 

aerosol flow rate. (a) Without sieving and (b) with sieving.
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FIG. 10. 
Size distribution of fibers measured at different times during the 18 h run at 0.1 lpm of 

aerosol flow rate. (a) Without sieving and (b) with sieving. (Color figure available online.)
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TABLE 1

A list of combinations of control parameters to obtain specific aerosol fibers using a vortex shaker for the 

material tested in this Study

Combination of control parameters
Number concentration for plateauregion

(cm−3) Fiber size or length

Batch amount 0.1 ~ 0.5 g, dry air,
Q = 1.5 lpm, no preshaking

200 ~ 1000 during the first 10 min
(with a dilution ratio of 3.3)

     —

Batch amount 0.5 ~ 1.0 g, dry air,
Q = 1.5 lpm, no preshaking

1000 ~ 3000 during the first 10 min
(with a dilution ratio of 3.3)

     —

Preshaking, dry air, Q = 1.5 lpm — Generation of larger fibers > ~ 5 µm in
aerodynamic diameter

Preshaking, humid air (RH = 90%),
Q = 1.5 lpm

— Generation of smaller fibers < ~ 1 µm in
aerodynamic diameter

Dry air, Q = 0.1 lpm — Generation of smaller fibers < ~ 4 µm in
aerodynamic diameter and L50 ~ 2.5 µm

Dry air, Q = 0.3 ~ 2.5 lpm — Generation of longer fibers > L50 ~ 10 µm;
A physical length distribution is similar to
that of the batch powder

Dry air, Q = 0.1 l pm, run a vortex
shaker for at least 10 h without sieving

— Generation of longer fibers > L50 ~ 25 µm
for leftover in the tube

Dry air, Q = 0.1 l pm, run a vortex
shaker for at least 10 h with sieving

— Generation of longer fibers > L50 ~ 35 µm
for leftover in the tube

Dry air, Q = 0.1 l pm, run a vortex
shaker for at least 10 h with 5 sieving
and take what is retained on the sieve

— Generation of much longer fibers > L50

~ 55 µm for leftover on the sieve
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